Homework - Monday (September 24, 2018)

Solve the following problems without a calculator. You <u>MUST</u> show your work. **NO WORK = NO CREDIT.**

1. Solve the inequality. Graph the answer.

-5 < x - 7

2. Solve the inequality. Graph the answer.

18 > 5k + 4k

 $\longleftrightarrow \longleftrightarrow \longleftrightarrow$

 \longleftrightarrow

3. Solve the inequality. Graph the answer.

 $2 \ge -4 - x$

4. Solve the inequality. Graph the answer.

$$\underline{x} + 4 \leq 9$$

2

Homework- Tuesday (September 25, 2018)

Solve the following problems without a calculator. You <u>MUST</u> show your work. **NO WORK = NO CREDIT.**

1. Find the solution set and graph.

 $9 \ge -2m + 2 - 3$

2. Solve the inequality. Graph the answer.

 $\underline{y} + 3 < 5$

 $\langle +++++++++ \rangle$

3. Find the solution set and graph.

 $2(n-5) \le -7$

4. Find the solution set and graph.

 $\frac{3x-2}{8} > 5$

 \longleftrightarrow

Homework - Wednesday (September 26, 2018)

Solve the following problems without a calculator. You \underline{MUST} show your work. NO WORK = NO CREDIT.

1. Solve the inequality. Graph the answer.

$$2x + 4 > x + 7$$

2. Find the solution set and graph.

$$5(6+3r) + 7 \ge 127$$

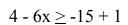
 $\langle \cdots \rangle$

3. Solve the inequality. Graph the answer.

$$-8x + 2x - 16 < -5x + 7x$$

4. Find the solution set and graph.

$$-3 \ge \underline{x} - 2$$


(1	1					1	
1	1		1 13		7		/	7

 $\langle \cdots \rangle$

Homework - Thursday (September 27, 2018)

Solve the following problems without a calculator. You <u>MUST</u> show your work. **NO WORK = NO CREDIT.**

1. Solve the inequality. Graph the answer.

2. Find the solution set and graph.

$$-4x - 2 < 8$$


 \longleftrightarrow

3. Solve the inequality. Graph the answer.

$$3x + 2 > -4x + 16$$

4. Find the solution set and graph.

$$6p - 1 > 3p + 8$$

 $\langle \cdots \rangle$